Approximate inference of gene regulatory network models from RNA-Seq time series data
نویسنده
چکیده
Inference of gene regulatory network structures from RNA-Seq data is challenging due to the nature of the data, as measurements take the form of counts of reads mapped to a given gene. Here we present a model for RNA-Seq time series data that applies a negative binomial distribution for the observations, and uses sparse regression with a horseshoe prior to learn a dynamic Bayesian network of interactions between genes. We use a variational inference scheme to learn approximate posterior distributions for the model parameters. The methodology is benchmarked on synthetic data designed to replicate the distribution of real world RNA-Seq data. We compare our method to other sparse regression approaches and information theoretic methods. We demonstrate an application of our method to a publicly available human neuronal stem cell differentiation RNA-Seq time series.
منابع مشابه
RNA-Seq Bayesian Network Exploration of Immune System in Bovine
Background: The stress is one of main factors effects on production system. Several factors (both genetic and environmental elements) regulate immune response to stress. Objectives: In order to determine the major immune system regulatory genes underlying stress responses, a learning Bayesian network approach for those regulatory genes was applied to RNA-...
متن کاملI-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing
Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...
متن کاملNonparanormal Distributions & Causal Inference with Single-Cell RNA-Seq Data
Background. Single-cell RNA-Seq is a new technique that can measure gene expression levels in individual cells. We would like to use single-cell RNA-seq data to learn genetic regulatory networks. This is a natural task for causal-model structurelearning algorithms, which aim to learn the causal relationships between the measured variables. Causal algorithms perform poorly in high dimensions unl...
متن کاملSCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation
Motivation The analysis of RNA-Seq data from individual differentiating cells enables us to reconstruct the differentiation process and the degree of differentiation (in pseudo-time) of each cell. Such analyses can reveal detailed expression dynamics and functional relationships for differentiation. To further elucidate differentiation processes, more insight into gene regulatory networks is re...
متن کاملElucidation of the sequential transcriptional activity in Escherichia coli using time-series RNA-seq data
Functional genomics and gene regulation inference has readily expanded our knowledge and understanding of gene interactions with regards to expression regulation. With the advancement of transcriptome sequencing in time-series comes the ability to study the sequential changes of the transcriptome. Here, we present a new method to augment regulation networks accumulated in literature with transc...
متن کامل